20 ABInBev

How data & analytics
is fransforming
ABInBev and how
to get started

(‘

James Gillespie, Europe Data Director
222222222



A8l

From hundreds of years of brewing tradition
and intense mergers and acquisition activity...
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To a digitally-enabled platform,

connecting 2B consumers to customers and suppliers...

ABI Ecosystem
Farmers ™\ / Beer brands
Suppliers Consumers Customers
/ \
Breweries Wholesalers



In the meantime, “software machine learning is eating the world”*

During the 2010s digital companies show how they drive value through data

and analytics. Interest in Data Science, Al and ML spikes from 2012.**
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But there’s a problem...

Focus on One Set of Skills Isolated Modelling Exercise Low Adoption

Marlenlin Lalig

Typical ML Pipeline

ML Environments
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What are your main
challenges in scaling data
science producis?

CAB



One way to solve
the problem...



An end to‘end process...

Ideate

Adopt & Improve

|

Scale Up In Production Iterate & Test

\{ L 2ol
" 4 $om

-



1. Ideate: Start small and focus on value and feasibility...

Artificial Mimics Human Behavior
Intelligence

Machine Building Trained Models of Data
-eaitihg - Probabilistic

- Linear Algebraic

Deep Model built by multilayered neural
Leaming

networks

Do you know the potential size Is it a problem that ML can solve?
of the opporfunity? « Repetitive but changing, low
» Forecasting future sales, to pricing cost of error, scalable..

stfrategy, to cost-saving
opportunities and more...

A8l

Is it a problem that people want
solving and can solve?

« Data requirements, stakeholder
buy-in, simplicity



2. Setup a small and nimble team with the right tools... Jfﬁ

Do you have the right skills in your Do you have a mechanism to How will you move fast but scale

team? manage rapid iteration? later?

« Data Scientists are important, « Agile practices are widespread, * Move fast, consider sandbox
but consider data engineers, adapt them and implement. environments where the tech
infrastructure engineers, and Track work and productivity. is replicated in prod.
product owners. lterate around tests.

< ABI



3. lterate and Test: With a clear focus on validation... e

o-H
The Right Approach m Keep an Eye on Data Quality

Population is splitinto 2

groups by random lot

' = looking for work ' = found work

Consider the right models for the Know how you will measure value Ensure you have basic controls on
job: and develop a hypothesis driven data quality and model health.
« Think broadly. Test multiple methodology: « Think broadly. Test multiple
models. * A/B, cross-validation, models.
backtesting, Randomized Control
Trials (RCT).

< ABI
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Do you have a platform that can
support you at scale?¢

« Consider the platform features
required to support your
capability.

A8l

Do you know how to operate and
support models in production?

« Make sure laC and CI/CD
are in place and teams know
how to use them.
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How will you track data quality
before it stops your businesse

« Develop monitoring and
observability because bad data
breaks models



Monitor & Support in Prod User Engagement & Feedback Continuous Iteration

i
X

5. Drive business adoption and continuous improvement M

Know how you will monitor and User engagement and feedback is If you ask for feedback, use it:
support data quality, model health a soft skill.: . Prepare to invest for the long
and uptime in production: » Building engagement, driving term. Keep models and products
+ DataOps teams and capabilities adoption and taking feedback relevant.

can help. takes time.

A8l
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Where do you see the fastest return on data science
products for your business in 20237



How did it work
in practice?



[
Algorithmically driven sales in our e-commerce operations...
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on BEES, our e-commerce and SAAS ‘ il P Y 9
platform ‘ | Orders influenced by algorithms are,
o £ on average, 3% larger than others
Step by Step
+ External benchmarking + Small team + Focus model + Integrated production « Technical and Business
of external expertise, development and environment for data KPIs monitored
data engineers and ingestion, model
software engineering deployment

@ P2 I 4 |



Driving increased sell-in and retail execution in our field sales...

B BTN T

MMM Accounts  Contacts Brands Product tems  Level of Sales ~ AccountSet  Agreements & Promotions  Visits  Conditions  Activities  Activity

, [ i Ovtvernd perad
L

Missing algorithmically driven execution Integrated intelligent distribution recommendations 2X Strike Rate vs. Normal Operation
in field teams, strong NR opportunity for on and off frade embedded in sales applications Automated distribution
to improve distribution and new product recommendations + NR increase

launches across the region

Step by Step

Field sales inputs and * Lead, Data scientist, + lIterate simple model * Integrated production * Monitor business impact
volume gaps analysis Data engineer and leverage the environment for data and P&L output

using internal/external power of AutoML ingestion, model

data deployment

@ Pt - 7 4 |~
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And saving on our bottom line with improved inventory management...

unction
M |
Recom ation Engine

Remediate millions of dollars of losses.
Support repack and resell initiatives.

Obsolete stocks causing issues: aim to Solution to identify and I

take the optimal actions with optimal remediates the
timing and reduce losses. company'’s Stock at Risk.
Step by Step
P&L analysis and « Data scientist and data « Test andlearn and * Integrated production + Focus on business
underlying drivers engineers select best fit model. environment for data adoption and

ingestion, model adherence to
recommendations

‘4 *<0 deploymen’r‘
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Feedback
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